201 research outputs found

    Scaling of the electron dissipation range of solar wind turbulence

    Full text link
    Electron scale solar wind turbulence has attracted great interest in recent years. Clear evidences have been given from the Cluster data that turbulence is not fully dissipated near the proton scale but continues cascading down to the electron scales. However, the scaling of the energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 years of the Cluster search-coil magnetometer (SCM) waveforms measured in the solar wind and perform a statistical study of the magnetic energy spectra in the frequency range [1,1801, 180]Hz. We show that a large fraction of the spectra exhibit clear breakpoints near the electon gyroscale ρe\rho_e, followed by steeper power-law like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that will be discussed in detail. We compare our results to recent ones reported in other studies and discuss their implication on the physical mechanisms and the theoretical modeling of energy dissipation in the SW.Comment: 10 pages, submitte

    Investigation of the Chirikov resonance overlap criteria for equatorial magnetosonic waves

    Get PDF
    Observations of equatorial magnetosonic waves made during the Cluster I nnerMagnetospheric Campaign clearly show discrete spectra consisting of emissions around harmonics of theproton gyrofrequency. Equatorial magnetosonic waves are important because of their ability to efficientlyscatter electrons in energy and pitch angle. This wave-particle interaction is numerically modeled throughthe use of diffusion coefficients, calculated based on a continuous spectrum such as that observed byspectrum analyzers. Using the Chirikov overlap resonance criterion, the calculation of the diffusioncoefficient will be assessed to determine whether they should be calculated based on the discrete spectralfeatures as opposed to a continuous spectrum. For the period studied, it is determined that the discretenature of the waves does fulfill the Chirikov overlap criterion and so the use of quasi-linear theory with theassumption of a continuous frequency spectrum is valid for the calculation of diffusion coefficients

    Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers

    Full text link
    The rotated multipliers method is performed in the case of the boundary stabilization by means of a(linear or non-linear) Neumann feedback. this method leads to new geometrical cases concerning the "active" part of the boundary where the feedback is apllied. Due to mixed boundary conditions, these cases generate singularities. Under a simple geometrical conditon concerning the orientation of boundary, we obtain a stabilization result in both cases.Comment: 17 pages, 9 figure

    Impact of the 26-30 May 2003 solar events on the earth ionosphere and thermosphere.

    Get PDF
    During the last week of May 2003, the solar active region AR 10365 produced a large number of flares, several of which were accompanied by Coronal Mass Ejections (CME). Specifically on 27 and 28 May three halo CMEs were observed which had a significant impact on geospace. On 29 May, upon their arrival at the L1 point, in front of the Earth's magnetosphere, two interplanetary shocks and two additional solar wind pressure pulses were recorded by the ACE spacecraft. The interplanetary magnetic field data showed the clear signature of a magnetic cloud passing ACE. In the wake of the successive increases in solar wind pressure, the magnetosphere became strongly compressed and the sub-solar magnetopause moved inside five Earth radii. At low altitudes the increased energy input to the magnetosphere was responsible for a substantial enhancement of Region-1 field-aligned currents. The ionospheric Hall currents also intensified and the entire high-latitude current system moved equatorward by about 10°. Several substorms occurred during this period, some of them - but not all - apparently triggered by the solar wind pressure pulses. The storm's most notable consequences on geospace, including space weather effects, were (1) the expansion of the auroral oval, and aurorae seen at mid latitudes, (2) the significant modification of the total electron content in the sunlight high-latitude ionosphere, (3) the perturbation of radio-wave propagation manifested by HF blackouts and increased GPS signal scintillation, and (4) the heating of the thermosphere, causing increased satellite drag. We discuss the reasons why the May 2003 storm is less intense than the October-November 2003 storms, although several indicators reach similar intensities

    A Comparison of Four Probability-Based Online and Mixed-Mode Panels in Europe

    Get PDF
    Inferential statistics teach us that we need a random probability sample to infer from a sample to the general population. In online survey research, however, volunteer access panels, in which respondents self-select themselves into the sample, dominate the landscape. Such panels are attractive due to their low costs. Nevertheless, recent years have seen increasing numbers of debates about the quality, in particular about errors in the representativeness and measurement, of such panels. In this article, we describe four probability-based online and mixed-mode panels for the general population, namely, the Longitudinal Internet Studies for the Social Sciences (LISS) Panel in the Netherlands, the German Internet Panel (GIP) and the GESIS Panel in Germany, and the Longitudinal Study by Internet for the Social Sciences (ELIPSS) Panel in France. We compare them in terms of sampling strategies, offline recruitment procedures, and panel characteristics. Our aim is to provide an overview to the scientific community of the availability of such data sources to demonstrate the potential strategies for recruiting and maintaining probability-based online panels to practitioners and to direct analysts of the comparative data collected across these panels to methodological differences that may affect comparative estimates

    The STAFF-DWP wave instrument on the DSP equatorial spacecraft: description and first results

    Get PDF
    The STAFF-DWP wave instrument on board the equatorial spacecraft (TC1) of the Double Star Project consists of a combination of 2 instruments which are a heritage of the Cluster mission: the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment and the Digital Wave-Processing experiment (DWP). On DSP-TC1 STAFF consists of a three-axis search coil magnetometer, used to measure magnetic fluctuations at frequencies up to 4 kHz and a waveform unit, up to 10 Hz, plus snapshots up to 180 Hz. DWP provides several onboard analysis tools: a complex FFT to fully characterise electromagnetic waves in the frequency range 10 Hz-4 kHz, a particle correlator linked to the PEACE electron experiment, and compression of the STAFF waveform data. The complementary Cluster and TC1 orbits, together with the similarity of the instruments, permits new multi-point studies. The first results show the capabilities of the experiment, with examples in the different regions of the magnetosphere-solar wind system that have been encountered by DSP-TC1 at the beginning of its operational phase. An overview of the different kinds of electromagnetic waves observed on the dayside from perigee to apogee is given, including the different whistler mode waves (hiss, chorus, lion roars) and broad-band ULF emissions. The polarisation and propagation characteristics of intense waves in the vicinity of a bow shock crossing are analysed using the dedicated PRASSADCO tool, giving results compatible with previous studies: the broad-band ULF waves consist of a superimposition of different wave modes, whereas the magnetosheath lion roars are right-handed and propagate close to the magnetic field. An example of a combined Cluster DSP-TC1 magnetopause crossing is given. This first case study shows that the ULF wave power intensity is higher at low latitude (DSP) than at high latitude (Cluster). On the nightside in the tail, a first wave event comparison - in a rather quiet time interval - is shown. It opens the doors to future studies, such as event timing during substorms, to possibly determine their onset location
    corecore